
  

AFRL-IF-RS-TR-2004-334 
Final Technical Report 
December 2004 
 
 
 
 
 
 
COMPOSABLE FORMAL MODELS FOR HIGH-
ASSURANCE FAULT TOLERANT NETWORKS 
  
SRI International 
 
  
Sponsored by 
Defense Advanced Research Projects Agency 
DARPA Order No. N442 
  
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 
 
The views and conclusions contained in this document are those of the authors and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, of the 
Defense Advanced Research Projects Agency or the U.S. Government. 
 
 
 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 

 



  

STINFO FINAL REPORT 
 
 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, 
including foreign nations. 
 
 
 AFRL-IF-RS-TR-2004-334 has been reviewed and is approved for publication 
 
 
 
 
 
 
 
APPROVED:   /s/ 
   DAVID E. KRZYSIAK 
   Project Engineer 
 
 
 
 
 
 
 
 FOR THE DIRECTOR:   /s/ 
     WARREN H. DEBANY, JR. 
     Technical Advisor 
     Information Grid Division 
     Information Directorate 
 
 
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
December 2004

3. REPORT TYPE AND DATES COVERED 
FINAL                    Jun 02 – Jun 04 

4. TITLE AND SUBTITLE 
 
COMPOSABLE FORMAL MODELS FOR HIGH-ASSURANCE FAULT 
TOLERANT NETWORKS 

6. AUTHOR(S) 
 
Carolyn Talcott 
  

5.  FUNDING NUMBERS 
C     - F30602-02-C-0130 
PE   - 62301E  
PR   - N442 
TA   -  FT 
WU  -  N1 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 
SRI International 
333 Ravenswood Avenue 
Menlo Park CA 94025-3493 
 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 
N/A 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
Defense Advanced Research Projects Agency             AFRL/IFGA 
3701 North Fairfax Drive                                                525 Brooks Road 
Arlington VA 22203-1714                                               Rome NY 13441-4505 
 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 
AFRL-IF-RS-TR-2004-334 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  David E. Krzysiak/IFGA/(315) 330-7454                          David.Krzysiak@rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
This effort carried out substantial case studies involving analysis of different network services in order to develop 
modeling and analysis methodologies and libraries of reusable models to aid in achieving higher assurance for and 
more robust designs of network systems.  There are four main results:  1) an analysis of a java secure proxy toolkit with 
models of attacks, mitigations, and patterns; 2) a modular formal executable model of the secure spread group 
communications system; 3) formal models of Distributed Denial of Service (DDoS) attacks and mitigation services 
complementing OPNET simulations; and 4) a first prototype of Mobile Maude. 
 

15. NUMBER OF PAGES14. SUBJECT TERMS  
network services case studies, Distributed Denial of Service (DDoS) attacks, DDoS attack 
mitigation, formal models 16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 

UL 

NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 

17



 

 i

 
 
 
 

 
Table of Contents 

 
 
1.0 Introduction and Overview................................................................... 1 

2.0 Java Secure Proxy Toolkit (SPTK) ...................................................... 2 

3.0 Distributed Denial-of-Service Attacks ................................................. 5 

4.0  Secure Group Communication ............................................................. 6 

5.0 Mobile Maude....................................................................................... 9 

6.0 References .......................................................................................... 12 

 
 

List of Figures 
 
 
Figure 1: Analysis Results for Attacker in the Network..................................................... 4 

Figure 2: Analysis Results for Compromised Registry ...................................................... 5 

Figure 3: Secure Spread Architecture ................................................................................. 7 

Figure 4: Mobile Maude: object and message mobility.................................................... 10 

 
 
 
 
 



 

 1

1.0 Introduction and Overview 
 
A two-year project received funding of $999, 739, out of a budgeted ceiling of 
$1,199,739.   Senior personnel were Dr. Carolyn Talcott (PI) and Prof. Jos´e Meseguer.  
Other team members included Dr. Steven Eker, Dr. Mark-Oliver Stehr, and Ambarish 
Sridharanarayanan.  Driven by a series of substantial case studies, the project aimed to 
develop modeling and analysis methodologies and libraries of reusable models to enable 
network systems to achieve higher assurance and more robust designs. 

Several candidates for case studies were identified among systems being developed as 
part of the Fault Tolerant Networks (FTN) and Dynamic Coalitions (DC) DARPA 
programs.  After preliminary investigations, three were selected for detailed formal 
modeling and analysis: the Java Secure Proxy Toolkit (Stanford-SRI DC project), Secure 
Spread (The Johns Hopkins University (JHU) DC project), and Distribute Denial of 
Service models (JHU APL FTN project).  An additional task was the development of a 
prototype of Mobile Maude.  The formal models, analyses, documentation, and slide 
presentations developed under this contract are available from the project Web site at 
http://www-formal.stanford.edu/clt/FTN. 

The models were developed using the rewriting logic language Maude. Rewriting logic 
[11, 13] is a simple logic well suited for distributed system specification, that is 
executable and reflective (capable of faithfully representing important aspects of its own 
syntax and deductive/computation mechanisms [8]).  The Maude system is an 
implementation of rewriting logic and its reflective capabilities.  Maude 2.0 was released 
in June 2003, with a system presentation at the Rewriting Techniques and Applications 
conference in Valencia. In addition to many efficiency improvements in the rewriting 
engine, Maude 2.0 implements an object and message fair rewriting strategy that is 
important for the development of Mobile Maude. Maude 2.1 was released in March 2004, 
with a system presentation at the Workshop on Rewriting Logic and Applications in 
Barcelona.  Maude 2.1 provides several new reflective capabilities and operations for 
module composition and renaming. As of version 2.0 Maude is open source and the 
source tree, binaries for several platforms, documentation, examples, and papers are 
available on the Maude Web site at maude.cs.uiuc.edu (mirrored at maude.csl.sri.com). 

The products of the case studies include: 

• Executable attack models for Java’s proxy-based remote service 
• Abstract models of crypto libraries (supporting the CLIQUES API) 
• Modular executable models of the Spread group communication system and its 

extensions to support virtual synchrony and secure communication—these models 
were designed to be easy to modify in order to support prototyping and analysis of 
alternative algorithm design decisions 

• New compositional modeling and formal analysis techniques 
• Models of Distributed Denial-of-Service (DDOS) attacks and mitigation technologies 
• Maude modules defining the prototype Mobile Maude infrastructure and examples of 

mobile agent code 
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The three case studies and Mobile Maude prototype are summarized below. Full details 
are presented in supporting documents (available from the project web site). 

 

2.0 Java Secure Proxy Toolkit (SPTK) 
 
The Secure Proxy Toolkit (SPTK), based on Java RMI and Jini technologies, was 
developed by John Mitchell, Ninghui Li, and Derrick Tong as part of the Stanford-SRI 
Dynamic Coalitions project Agile Management of Dynamic Collaboration.  The objective 
of this case study was to formally model and analyze the SPTK.  An additional objective 
was to use this case study as an example of how to develop and organize models of such 
systems, to model different attacks, and to analyze the service models for them in the 
context of possible attacks.  The resulting models and analyses are available at www-
formal.stanford.edu/clt/FTN/SPTK/index.html along with a tutorial document describing 
the models and analyses in some detail.  Here we summarize this work. 

In a distributed system in which servers wish to make services available to remote clients, 
the objective of a service proxy mechanism is to facilitate client-server interaction by 
providing: 

1. Mechanisms for service registration and lookup, 
2. Proxies that make the communication appear local to both the client and the 

server processes. 
 
A secure proxy toolkit (SPTK) should satisfy the above requirement and also should 
transparently support a variety of security properties: protecting information 
communicated between client and server, assuring client and server of each other’s 
identity, and enforcing access policies.  Thus, it should provide fixed interfaces to client 
and server applications.  Only the internal interactions change in order to provide 
protection against given threat conditions or meet different security needs. 

 

The design of the SPTK was motivated by the following security goals: 

I --Proxy access to client JVM and resources is controlled—this can be addressed by Java 
security mechanisms. 

II --Communications between proxies and services are secure—this can be addressed by 
proxies that use secure remote communication such as SSL, but can the client rely on the 
proxy it receives being such a proxy? 

III --Clients should be able to authenticate proxies—both code and data. 

IV --Some applications require services to authenticate and authorize client access, 
supporting 

• authentication only once in a session (single signon) 
• multiple authentication mechanisms 
• authorization based on arguments of calls. 
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The first step in developing the formal models was to define event diagrams 
characterizing the underlying protocols and main scenarios for use of the toolkit.  This 
was done in collaboration with the Stanford group.  A key issue was determining what 
properties to check.  The starting point was the informal list of desired properties given 
by John Mitchell in his project presentation.  These properties concerned mutual 
authentication of client and server, independent of the (possibly hostile) behavior of 
Registry/Lookup services.  In the process of developing the event diagrams an omission 
in the toolkit design was discovered that allowed a client to authenticate a signed proxy 
for a wrong service.  This has been corrected in both the implementation and the formal 
model. 

A modular series of formal executable models was developed using Maude. Each model 
in the series provides an additional level of security protection of client and server, 
ranging from no protection to signed proxies and authenticated secure session 
communication.  The latter models the Secure Proxy Java Toolkit developed by Stanford. 

Level 0 is for use in a situation with no attacker.  The job of the client and server side 
proxies is simply to make interaction appear local to the application and service, 
respectively.  This level achieves security goal I by relying on the underlying JVM to 
protect the host system. 

Level 1 provides protection against an attacker that can observe and modify 
communications between the client and server.  Such an attacker aims to obtain a client’s 
private information and might also modify service calls and replies.  The level 1 proxies 
communicate using secure connections (for example SSL).  This level achieves security 
goal II. 

Level 2 provides protection against an attacker that can observe and modify 
communication between the lookup service and client or server as well as client server 
communication.  To foil the attacker, the level 2 server toolkit signs the proxy, before 
registration; thus, modification can be detected.  The client-side toolkit checks whether a 
proxy obtained by lookup was registered by a trusted server by checking the signature. 
 
Level 2a includes a service description contained in the registered proxy.  The client-side 
toolkit additionally confirms that the proxy received has an acceptable description.  This 
level achieves security goal III. 

Level 3 adds client authentication to ensure that the requests are from the claimed client 
and that they are allowed for this client.  This prevents an attacker from impersonating a 
client, thus possibly corrupting the server’s data or obtaining client secrets that result 
from queries containing only public data.  The toolkit also sets up a secure session 
between the mutually authenticated server and client.  This level achieves security goal 
IV. 

Two attack models were developed: attacker-in-the-ether and compromised registry.  The 
attacker-in-the-ether has control over the network and is free to modify or generate 
messages.  (Deleting messages is not considered as we are not protecting against denial-
of-service attacks.)  A compromised registry may reply to lookup requests with any proxy 
it chooses. 
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The toolkit models were analyzed in composition with attackers. Figures 1 and 2 
summarize the analysis results for each level and attack model. In these summaries, 
columns are labeled by the property checked (described in the accompanying key) and 
the rows correspond to SPTK models providing the different security levels.  The symbol 
+ means the attacker succeeds, while – means that the attacker fails. 

 
The attacks demonstrate the need for not only checking signatures, but also that the proxy 
represents the requested service. 
 

 
 

Figure 1: Analysis Results for Attacker in the Network 
 
1.1 attacker can see/modify client data sent in service calls and replies 
1.2 client accepts wrong proxy 
1.3 unauthorized service call succeeds 
1.4 imposter succeeds in forging client id 
 
Figure 1 summarizes analyses for the “attacker in the network” attack model, while 
Figure 2 summarizes analyses for the “compromised registry” attack model. 

In both cases, we see that all the attacks succeed when the level 0 toolkit is used, while 
none succeed when the level 3 toolkit is used.  For attacks on client-server 
communication (1.1), level 1 protection is sufficient. In the case of the compromised 
lookup service, we do not worry about client-server communication, but we do sanity 
check to see if it is possible for the client to find and use the requested service; here, the + 
means that the client can succeed in all cases.  For attacks on communication with the 
registry (1.2), level 2 protection is sufficient if both the server signature and the service 
description are checked (level 2a).  

The distinction is made more precise in the compromised registry model where level 2f is 
sufficient protection to keep the client from accepting a proxy to a service provided by an 
untrusted server (property 2.2), while level 2a is required to assure that a proxy to the 
correct service is accepted (2.3).  Properties 1.3, 1.4, and 2.4 deal with situations in which 
the server is tricked into serving improper requests. These attacks require level 3 
protection. 
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Figure 2: Analysis Results for Compromised Registry 
 
2.1 client can obtain proxy for requested service (sanity check) 
2.2 client accepts proxy to attacker service 
2.3 client accepts wrong trusted server proxy 
2.4 service integrity violated 

3.0 Distributed Denial-of-Service Attacks 
 
One objective is to add formal aspects to the model verification and validation done for 
DDoS attack models studied as part of a Johns Hopkins University Applied Physics 
Laboratory (JHUAPL) FTN project.  The first issue is to determine which attacks and 
mitigation technologies are most amenable to the Maude modeling and analysis 
capabilities.  In discussion with the JHUAPL team we determined to start with attacks for 
which classification mitigation technologies exist.  Our first effort will be to model and 
analyze the TCP SYN flood attack and Synkill active monitoring technology recently 
studied by JHUAPL. Looking for misclassifications is of interest.  

Network simulators can be used as a test bed for analyzing networks where 
implementation is infeasible either because of the premature nature of the ideas, or 
because of resource constraints.  Maude’s capability as a programming language and as a 
powerful formal analysis tool has helped us in implementing a prototype network 
simulator in Maude.  The current version has basic support for discrete time, multiple 
nodes, multiple layered networks, and routing.  A mechanism is in place for generating 
events (such as requests, packets) statistically.  

Using this infrastructure, and in cooperation with Donna Gregg’s group at JHU-APL, we 
have simulated a DoS attack on a 70-node low-connectivity network.  In addition, a 
counterstrategy for DoS attacks proposed by Gene Spafford’s group at Purdue, known as 
synkill has also been formally specified as a test case.  Using Maude’s formal analysis 
mechanisms, we have found some potential problems in the working of the synkill 
algorithm, where the algorithm misclassifies certain malicious hosts as benign. 
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4.0  Secure Group Communication 
 
The aim of this case study was to provide an executable formal model of the services 
provided by the Secure Spread group communication system (a Johns Hopkins 
University CS Department DC project, http://www.cnds.jhu.edu/ research/group/ 
secure_spread/), and to develop mechanisms for model validation and lightweight 
analysis. The basic service a group communication system (GCS) provides is multicast of 
messages to groups that it manages.  A GCS accepts send requests from applications and 
delivers multicast messages received.  In addition to send and delivery events, there are 
view installation events delivering view messages to application processes.  A view has 
an identifier, a set of member processes (the current members), and a set of transitional 
processes (those coming from the same view as the receiving process).  GCS events are 
partially ordered according to arrival order at a given process, and send precedes a 
delivery causal order across processes.  A message send or delivery event at a process is 
said to be ‘in’ the view whose installation at the process most recently precedes this 
event. 

 
A number of properties should hold for a GCS (see [5, 14] for details). For example, Self 
Inclusion: if a process installs a view, it is a member of that view.Sending View Delivery: 
a message is delivered in the view in which it was sent.  Self Delivery: if a process sends 
a message, it will deliver that message unless it crashes. 

Virtual Synchrony: if two processes move together from one view to the next, they 
deliver the same messages in the first view.  We refer to these as virtual synchrony (VS) 
properties.  Spread implements an extended virtual synchrony (EVS) semantics that 
weakens the Sending View Delivery property to Same View Delivery: if two processes 
deliver a message, they both deliver it in the same view. 

In addition, a GCS may provide different types of message delivery service with different 
reliability and ordering guarantees: reliable, fifo, causally ordered, totally ordered (also 
called agreed), or safe, where the latter means that messages are delivered only if it is 
known that everybody in the group has actually received it. 
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Figure 3: Secure Spread Architecture 
 
 

The modular architecture of Secure Spread is shown in Figure 3.  The implementation of 
Spread is based on two-level architecture: a configuration layer that manages the physical 
group of processors (which can be partitioned depending on the network connectivity) 
and a group layer that manages logical groups of agents.  From discussions with the 
Spread team we determined that [2] is intended as the specification of the configuration 
layer and [14] should be regarded as the specification of the group layer.  Both the 
configuration layer and the group layer provide extended virtual synchrony, and the 
objective of [14] is to show how this can be used to obtain virtual synchrony as 
implemented in Flush Spread. Finally, [1] shows how Secure Spread, a layer for secure 
group communication, can be built on top of Flush Spread and the Cliques toolkit [17, 4], 
a C library (see http://sconce.ics.uci.edu/cliques/) that supports group key agreement 
and is to a large degree independent of the group communication system. 

A formal executable model of Secure Spread was developed in Maude.  The model is 
modular with independently executable and testable components formalizing the two 
layers of Spread, the Flush Spread VS extension, the API of the CLIQUES cryptographic 
service, and Secure Spread. Sources used for developing these models included, in 
addition to the documents cited above, a user’s guide [3], the Spread sources and online 
API documentation [15, 16], and many helpful discussions with the Spread group at JHU. 
An important goal was to obtain a mathematically satisfactory and concise description 
that abstracts from implementation specific aspects and covers the most general behavior 
that an application of Spread can observe.  The resulting specification serves as precise 
documentation that models the behavior intended to be observable and clarifies the 
virtual synchrony and ordering guarantees provided by each component.  In addition, the 
suite of formal models should serve as a tool for testing alternative algorithm designs, 
semantic guarantees, and extensions in functionality.  A future possibility is to use this 
model as the basis for the replicated database application built on Spread. 

A number of issues arose in developing the models.  These are briefly indicated below. 
Details can be found in the “Lessons Learned” document on the case study Web site. 
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Configuration Layer. At the configuration layer we needed to generalize the conditions 
of [2] to include all message types, since [2] covers only three delivery modes—namely, 
causal, agreed, and safe, but not reliable and fifo.  The causal order delivery conditions of 
[2] conflict with self-delivery if generalized to include other message types 

Group Layer. In addition to messages discussed in [14], the Spread group layer API 
provides group join and leave messages and client connect and disconnect (the latter 
entailing change in all groups of which the client is a member).  We had to rely on our 
understanding of the source code to determine the semantics of these messages.  We also 
defined a notion of private group to model unicast, needed for Secure Spread. 

Flush Spread. The specification of Flush Spread relied mainly on [14].  Both the 
implementation and modeling of Flush Spread were made easier by the clearly spelled-
out API for Spread. 

Cliques. Our goal for this component was to come up with a formal specification that 
exactly captures what has been implemented for the capabilities of the Cliques Toolkit 
used in Secure Spread, and also captures the generic nature of the Cliques API so that 
further capabilities can be   added without major modifications.  The available 
documentation was somewhat outdated and we had to rely to a large degree on 
understanding of the C code.  The result is a rather abstract but realistic specification. 

 
Secure Spread. (seehttp://www.cnds.jhu.edu/research/group/secure_spread/)  Provides 
the glue between Flush Spread and the Cliques toolkit.  We specified the basic algorithm, 
formulated as a state machine, as presented in [1]. A few gaps had to be filled in and 
small errors corrected.  For example, treatment of a join was not clear in the state 
machine specification.  To maintain a consistent state at the group layer in our 
specification, events are handled even when the state machine is not yet running for a 
particular group (the client has not joined).  The state machine description also makes an 
illegal call to the Cliques API.  Our specification provides one solution, and the 
implementers have provided another.  Also, some assignments in the state machine 
description should be Cliques procedure calls.  

Since we built the specification of Secure Spread on well-tested building blocks—
namely, the Flush Spread and the Cliques specifications—the effort that we spend on this 
layer was very reasonable.  We expect that it would be very easy to optimize the 
algorithm as discussed in [1], because all the necessary subprotocols are provided by the 
Cliques specification.  

Since Spread accounts for process failure and network partitions as well as asynchronous 
application input, both the system and its formal model are highly nondeterministic.  To 
manage the complexity of analysis in the presence of massive nondeterminism, we 
developed the notion of controller process that can be composed with an initial system 
configuration to constrain the reachable state space and to drive the execution to specific 
situations of interest, that is, to constrain execution to an abstract scenario of interest. 
This provides a useful form of analysis that gives broader coverage than testing and can 
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be applied to larger initial configurations than unconstrained search or model-checking. 
We have defined a simple controller language based on sequential and parallel 
composition of actions. The actions directly correspond to the rewrite rules of our system 
that we would like to control. 

In addition to controller-based analysis, we defined variants of the published axioms for 
group communication systems [5, 14] as properties of the Maude models for the 
configuration and group layers and sketched proofs that the Maude specification satisfies 
relevant axioms.  The process of determining the relevant and desired properties for each 
layer and working out proofs raised a number of issues regarding the intended behavior 
of Spread from different points of view, and exposed some problems with the formal 
specification that were subsequently fixed. 

 
Although [2] clearly documents the configuration layer, and [14] is intended to capture 
the group layer, it seemed meaningful to reinterpret [14] and apply it to the configuration 
level (thinking of a configuration as a single physical group).  If we interpret send from 
the Spread daemons point of view, the Sending View Delivery property holds and from 
that Same View Delivery for send interpreted from the client application’s point of view 
can be inferred.  The conflict between Self Delivery and causal order delivery was 
discovered while we carried out this validation of the configuration layer.  Generalizing 
these properties to the case in which view changes are caused not only by network 
change but also by joins, leaves, and disconnects unearthed new problems with the Same 
View Delivery property, namely, join/leave notifications are implemented as agreed 
messages, but reliable, fifo, and causal messages can be delivered before or after 
depending on the process.  Hence, Same View Delivery can be violated for messages 
lower than agreed.  The modularity and compositionality techniques used in developing 
the Secure Spread specification were essential to managing the complexity inherent in 
developing faithful specifications of real systems.  The benefits of this approach include:  

 

• Understanding of each component in isolation 
• Modular testing and analysis 
• Modular structure of specification leading to a modular structure of proofs 
• Allowing parallel development and collaboration. 

 
The models, analyses, reinterpreted GCS properties, informal proofs, and supporting 
documentation can be found at http://formal.cs.uiuc.edu/stehr/spread_eng.html (also 
accessible from the project Web site). 

 

5.0 Mobile Maude 
 
Mobile Maude is a Mobile Agent language extending the rewriting logic [11] language 
Maude [7, 6] and supporting mobile computation.  Mobile Maude uses reflection to 
obtain a simple and general declarative mobile language design and makes possible 
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strong assurances of mobile agent behavior.  The two key notions are processes and 
mobile objects.  Processes are located in computational environments where mobile 
objects can reside.  Mobile objects have their own code, can move between different 
processes in different locations, and can communicate asynchronously with each other by 
means of messages. 

 

 
 

Figure 4: Mobile Maude: object and message mobility 
 
 
Figure 4 illustrates a prototypical Mobile Maude system with two located processes and 
three mobile agents, where agent 03 is moving from one location to another.  In addition, 
agent 01 is sending a message to agent 02.  Each mobile object is created by some 
process, and that process is responsible for keeping track of the location of the mobile 
object in order that messages may be delivered. 

The Mobile Maude prototype consists of a collection of Maude modules specifying 
infrastructure to support modeling, prototyping, and analysis of mobile agents.  The 
initial design of Mobile Maude was presented in [9].  The implementation is founded on 
the Russian Dolls reflective distributed object framework [12] and the IMaude 
environment [10] for interacting with Maude specifications.  The communication 
infrastructure for Mobile Maude is provided by the IOP interoperability platform [10]. 

In the Russian Dolls framework an object has an identifier, a class identifier, a set of 
attributes (fields), and an interface.  The behavior of an object is specified by a set of 
rewrite rules associated to the objects class.  Objects may be nested, hence the Russian 
Dolls metaphor. The object’s interface makes explicit its points of interaction with its 
environment, both its peers and its containing object, if any.  In Mobile Maude an 
interface consists of two message queues, one for incoming messages and one for 
outgoing messages. 

Formally, a located process (briefly a process) is an object whose attributes include a 
configuration of mobile objects and messages, and a mapping from identifiers of objects 
it has created to the object’s last known location and the number of hops the object took 
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to reach its last location.  Each time a mobile object arrives at a new location (as the 
contents of a message) the receiving process notifies the object’s creator of the new 
location and hop count.  The hop count is used to identify stale location information. A 
process also keeps information to allow it to generate a new identifier each time it creates 
a mobile object. 

A mobile object carries its code and state with it when it moves to a new location.  The 
code for a Maude object is the module containing the declarations for the object attributes 
and the rewrite rules specifying its behavior.  Reflection is used to transform code and 
state into data that can be understood by any located process. In particular, a mobile 
object has two levels (indicated by the double oval in Figure 4): a meta level (called the 
mobile object wrapper), and a base level (called the base object or base agent).  A mobile 
object wrapper has the same attributes for all mobile objects. These consist of 
metarepresentations of the base object and of the module specifying the base object 
behavior, an integer recording the number of hops that the object has made (initially 0), a 
bound on the number of rewrites the object can use in any execution step, and auxiliary 
data used to keep track of the wrapper’s processing state.  The bound on rewrites is a 
form of resource management and is used to ensure that all mobile objects in a given 
location will have a fair share of the available resources. 

The rules for located process behavior specify how messages output by its mobile objects 
are processed, and how it processes messages from peer located objects.  The interesting 
mobile object message is the go message which specifies the target location as well as the 
data needed to reconstitute the object at the new location.  This is turned into an install 
request addressed to the peer process location, and dually when a process receives an 
install request it reconstitutes the mobile object in its configuration and reports the new 
location. In addition, processes send and receive requests to route messages to mobile 
objects.  These are handled using the object location mapping. 

The rules for the mobile object wrapper specify how the wrapper manages its base object. 
Messages sent by the base level to peers are forwarded to the peer wrapper for delivery, 
and messages for delivery received from peer wrappers are delivered to the base object, 
using the reflected evaluation and rewriting functions.  Requests for new object creation 
are modified by adding a mobile object wrapper to the object specification.  Mobility for 
a base object means that it can send messages of the form go(loc).  To process such a 
message, the mobile wrapper packages its identifier, class id, attributes (which include 
the base object and code module), and interface queues and turns itself into a request to 
go to the location specified by the base object, containing the packaged information. 

Using the Mobile Maude infrastructure, to specify a mobile agent system the user needs 
only to specify the behavior of base objects.  These are ordinary Maude objects with the 
Russian Dolls object structure, specified by defining the class ids, attributes, and contents 
of messages sent to peers.  In addition to peer-to-peer messages, a base mobile object 
may send new object requests (handled by the container process) and go requests. 
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The Mobile Maude infrastructure is designed with independently executable layers to 
allow incremental testing and validation of mobile agent specifications.  A system of base 
objects may be executed by importing a module that defines base mobile object system 
composition by adding necessary communication rules.  Here, location is simply in the 
mind of the object and the object marshaling and unmarshaling operations are not needed. 
A configuration of mobile wrapper objects can be executed by importing a module that 
defines wrapped mobile object system composition and communication rules.  Finally, a 
collection of located processes can be executed by importing a module that defines 
process communication rules.  This can all be done by using the Maude command line 
interface.  This approach has the limitation that interaction with the mobile system cannot 
be controlled, and all messages to be considered must be present in the initial 
configuration.  By using an IMaude execution environment the user can start a system, 
and incrementally send messages and receive replies, giving a more controlled test 
environment.  This environment is included in the Mobile Maude implementation 
package. 

A simple example of a data mobile that goes from place to place collecting data and 
answering queries is included with infrastructure modules along with example test runs to 
illustrate the process of defining and testing mobile object systems.  

The Mobile Maude prototype, execution environments, example and documentation can 
befound at http://www-formal.stanford.edu/clt/FTN/MobileMaude. 
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